گراف مقسوم علیه صفر بر مبنای یک ایدآل برای یک حلقه ی تعویض پذیر
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه
- author نجمه صبوری شیرازی
- adviser سعید صفاییان احسان ممتحن
- Number of pages: First 15 pages
- publication year 1392
abstract
فرض کنید r یک حلقه تعویض پذیر باشد، گراف مقسوم علیه صفرr، با نماد(r)?، گراف غیر جهت داری است که رأس های آن عناصر غیر صفر مقسوم علیه های صفر r هستند، چنانچه دو رأس x و y به وسیله یک لبه به هم متصل اند اگر و تنها اگر xy=0. حال چون صفر یک اید آل از حلقه r است، میتوان آن را در تعریف فوق با اید آل دلخواه i جابجا کرد و تعریف زیر را مطرح نمود. فرض کنید r یک حلقه تعویض پذیر و i اید آلی از r باشد. گراف غیر جهت دار (r)i? با رأس های {x ri | xy i , for some y ri} را این گونه تعریف می کنیم که دو رأس x و y به هم متصل اند اگر و تنها اگر xy i.
similar resources
گراف مقسوم علیه صفر یک حلقه: حالت تعویض ناپذیر
برای حلقه تعویض پذیر r، گرافی با رئوس در مجموعه z(r) ( مقسوم علیه های صفر r) است به طوری که رتوس مجزا a و b مجاور هستند اگر و تنها اگر ab=0. فرض کنید r یک حلقه تعویض پذیر و حلقه ی ماتریس های روی r باشد. و به ترتیب گراف های مقسوم علیه های صفر r و است. بخشی از هدف ما در این پایان نامه پیدا کردن روابط بین قطر و است. این مسئله را بصورت طبیعی با بررسی روابط بین گراف مقسوم علیه صفر حلقه تعویض پذیرr ...
گراف مقسوم علیه صفر یک حلقه
در این پایان نامه فرض میکنیم r حلقه جابجایی و یکدار و مدول ها یکانی باشند. با توجه به تعریف مقسوم علیه صفر یک حلقه، گراف مقسوم علیه صفر که با نماد (r)? نشان می دهیم را برای چند حلقه متفاوت تعریف کرده و خواص و روابط آنها را بررسی می کنیم. بعضی حلقه های مورد بررسی عبارتند از: حلقه هایی که ایدآل های اول آنها خطی مرتب باشند، حلقه هایی که ایدآل های اول آنها مشمول در (r)z خطی مرتب و حلقه های زنجی...
15 صفحه اولگراف مقسوم علیه های صفر یک حلقه
در این پایان نامه به بررسی گراف مقسوم علیه های صفر یک حلقه می پردازیم. فرض کنید r یک حلقه باشد. در ابتدا گراف مقسوم علیه صفر را نسبت به یک ایدآل بررسی می کنیم سپس گراف مقسوم علیه های صفر را برای مجموع مستقیمی از حلقه ها و حلقه های غیر تعویضپذیر و حلقه های سری توانی و چند جمله ای بررسی می کنیم.
15 صفحه اولگراف مقسوم علیه صفر ملغمه ی یک حلقه r تحت ایدآل ان
در این پایان نامه ابتدا گراف مقسوم علیه توسیع ناگاتا را مطالعه میکنیم و سپس گراف مقسوم علیه صفر حلقه ملغمه یr تحت ایدآل آن مورد بررسی قرار می گیرد. شرایط لازم و کافی برای کامل بودن این گراف ها و قطر و کمر این گراف ها را مورد مطالعه قرار می دهیم.
15 صفحه اولگراف مقسوم علیه صفر نسبت به یک ایدآل
فرض میکنیم r حلقه ای تعویض پذیر یکدار و (z(r یک مجموعه از مقسوم علیه های صفر r باشد . گراف مقسوم علیه های صفر (?(r گرافی است که راس های آن عضو{z*(r) =z(r) {0 می باشند؛ دو راس متمایز x,y متعلق به مجاور هستند اگر وتنها xy=0 . حال چون صفر یک ایدآل از r می باشد، با تعویض ایدآل صفر در r با یک ایدآل دلخواه مانند i ازr ، گراف (? i(rایجاد می شود که راس های آن همه عناصر مجموعه ی {x?ri|xy?i;y?ri} هستند...
15 صفحه اولقطر گراف مقسوم علیه صفر برای حاصل ضرب مستقیم متناهی از حلقه های تعویض پذیر
فرض کنید r یک حلقه جابجایی باشد . مجموعه مقسوم علیه صفر به جز صفر حلقه r را به عنوان رئوس گراف مقسوم علیه صفر روی حلقه r در نظر بگیرید. دو راس متمایز a و b با هم مجاورند اگر و تنها اگر ab=0. در این پایان نامه قطر گراف مقسوم علیه صفر حاصل ضرب متناهی از حلقه ها را محاسبه میکنیم. همچنین به بررسی گراف مقسوم علیه صفر روی برخی حلقه های خاص می پردازیم و قطر، کمر، ععد خوشه ای و عدد استقلال این گراف ها ...
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023